Effects of Rotation on Thermal-Gravitational Instability in the Protogalactic Disk Environment

نویسندگان

  • Chang Hyun Baek
  • Dongsu Ryu
  • Hyesung Kang
  • Jongsoo Kim
چکیده

Thermal-gravitational instability (TGI) is studied in the protogalactic environment. We extend our previous work, where we found that dense clumps first form out of hot background gas by thermal instability and later a small fraction of them grow to virialized clouds of mass Mc & 6×10 6 M⊙ by gravitational infall and merging. But these clouds have large angular momentum, so they would be difficult, if not impossible, to further evolve into globular clusters. In this paper, through three-dimensional hydrodynamic simulations in a uniformly rotating frame, we explore if the Coriolis force due to rotation in protogalactic disk regions can hinder binary merging and reduce angular momentum of the clouds formed. With rotation comparable to the Galactic rotation at the Solar circle, the Coriolis force is smaller than the pressure force during the early thermal instability stage. So the properties of clumps formed by thermal instability are not affected noticeably by rotation, except increased angular momentum. However, during later stage the Coriolis force becomes dominant over the gravity, and hence the further growth to gravitationally bound clouds by gravitational infall and merging is prohibited. Our results show that the Coriolis force effectively destroys the picture of cloud formation via TGI, rather than alleviate the problem of large angular momentum. Subject headings: hydrodynamics — instabilities ARCSEC, Sejong University, Seoul 143-747, Korea Korea Astronomy & Space Science Institute, Daejeon 305-348, Korea Department of Astronomy & Space Science, Chungnam National University, Daejeon 305-764, Korea Department of Earth Sciences, Pusan National University, Pusan 609-735, Korea

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Galactic Gas Disks and the Formation of Massive Clusters

We study gravitational instabilities in disks, with special attention to the most massive clumps that form because they are expected to be the progenitors of globular-type clusters. The maximum unstable mass is set by rotation and depends only on the surface density and orbital frequency of the disk. We propose that the formation of massive clusters is related to this largest scale in galaxies ...

متن کامل

The Density-Driven Nanofluid Convection in an Anisotropic Porous Medium Layer with Rotation and Variable Gravity Field: A Numerical Investigation

In this study, a numerical examination of the significance of rotation and changeable gravitational field on the start of nanofluid convective movement in an anisotropic porous medium layer is shown. A model that accounts for the impact of Brownian diffusion and thermophoresis is used for nanofluid, while Darcy’s law is taken for the porous medium. The porous layer is subjected to uniform rotat...

متن کامل

Three-Dimensional Numerical Simulations of Thermal-Gravitational Instability in Protogalactic Halo Environment

We study thermal-gravitational instability in simplified models for protogalactic halos using three-dimensional hydrodynamic simulations. The simulations started with isothermal density perturbations of various power spectra, and followed the evolution of gas with radiative cooling down to T = 10 K, background heating, and self-gravity for up to ∼ 20 cooling times. Then cooled and condensed clo...

متن کامل

A Novel Indicator to Predict the Onset of Instability of a Gravitational Flow on a Slope

In order to present a quantitative indicator for the onset of instability, in this paper, the critical points of a stratified gravitational flow on a slope are found and analyzed. These points are obtained by means of the solution of the two-dimensional Navier-Stokes equations via the standard Arakawa-C finite-difference method. Results show that in the marginal Richardson numbers, the critical...

متن کامل

Thermal Convection of Rotating Micropolar Fluid in Hydromagnetics Saturating A Porous Medium

This paper deals with the theoretical investigation of the thermal instability of a thin layer of electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained between two free boundaries using a linear stability analysis theory, and normal mode analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006